giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 - 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam.
1. Giới thiệu về tài liệu, đề thi
TAODETHI.xyz giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam.
2. Nội dung chính của tài liệu, đề thi
Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam:
+ Cho hình chóp có SA ABCD đáy ABCD là hình thang vuông tại A và B AD BC AB. Góc giữa mặt phẳng SBC và mặt phẳng ABCD bằng 0 60. Gọi M là trung điểm của cạnh và là điểm thỏa mãn ID AI 2. Gọi E F lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB SC. Gọi H là giao điểm của hai đường thẳng SI và AM. a) Tính thể tích khối tứ diện CDMI và khoảng cách giữa hai đường thẳng AM và SC. b) Tính thể tích khối nón có đáy là hình tròn ngoại tiếp EFH và đỉnh thuộc mặt phẳng ABCD.
+ Cho hình lăng trụ đứng ABC A B C ABC vuông tại A AB AC 2. Gọi E là điểm thỏa mãn EC EC 2. Khoảng cách từ điểm C’ đến mặt phẳng ABE bằng 12. Gọi là góc giữa mặt phẳng ABE và mặt phẳng ABC. Tìm cos để thể tích khối lăng trụ ABC A B C đạt giá trị nhỏ nhất.
+ Trong không gian với hệ tọa độ Oxyz, cho các điểm B 9 1 4 C 9 7 4. Trong các ABC thỏa mãn điểm A thuộc mặt phẳng Oxy các đường trung tuyến kẻ từ đỉnh B và C vuông góc với nhau sao cho góc A lớn nhất. Viết phương trình mặt cầu đường kính OA với O là gốc tọa độ.
+ Cho hình chóp có SA ABCD đáy ABCD là hình thang vuông tại A và B AD BC AB. Góc giữa mặt phẳng SBC và mặt phẳng ABCD bằng 0 60. Gọi M là trung điểm của cạnh và là điểm thỏa mãn ID AI 2. Gọi E F lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB SC. Gọi H là giao điểm của hai đường thẳng SI và AM. a) Tính thể tích khối tứ diện CDMI và khoảng cách giữa hai đường thẳng AM và SC. b) Tính thể tích khối nón có đáy là hình tròn ngoại tiếp EFH và đỉnh thuộc mặt phẳng ABCD.
+ Cho hình lăng trụ đứng ABC A B C ABC vuông tại A AB AC 2. Gọi E là điểm thỏa mãn EC EC 2. Khoảng cách từ điểm C’ đến mặt phẳng ABE bằng 12. Gọi là góc giữa mặt phẳng ABE và mặt phẳng ABC. Tìm cos để thể tích khối lăng trụ ABC A B C đạt giá trị nhỏ nhất.
+ Trong không gian với hệ tọa độ Oxyz, cho các điểm B 9 1 4 C 9 7 4. Trong các ABC thỏa mãn điểm A thuộc mặt phẳng Oxy các đường trung tuyến kẻ từ đỉnh B và C vuông góc với nhau sao cho góc A lớn nhất. Viết phương trình mặt cầu đường kính OA với O là gốc tọa độ.
3. Xem trước tài liệu, đề thi
4. Tải xuống tài liệu, đề thi
5. Làm bài thi Online đề thi này
Theo TOANMATH
Link bài gốc: https://toanmath.com/2024/03/de-hoc-sinh-gioi-toan-12-cap-tinh-nam-2023-2024-so-gddt-ha-nam.html