giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát học sinh giỏi môn Toán 11 năm học 2023 - 2024 trường THPT Lê Quý Đôn, tỉnh Thái Bình. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Học sinh chọn 1 trong 4 phương án A B C D; Học sinh chỉ chọn ĐÚNG hoặc SAI; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm.
1. Giới thiệu về tài liệu, đề thi
TAODETHI.xyz giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát học sinh giỏi môn Toán 11 năm học 2023 – 2024 trường THPT Lê Quý Đôn, tỉnh Thái Bình. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Học sinh chọn 1 trong 4 phương án A B C D; Học sinh chỉ chọn ĐÚNG hoặc SAI; Tự luận. Đề thi có đáp án và hướng dẫn chấm điểm.
2. Nội dung chính của tài liệu, đề thi
Trích dẫn Đề khảo sát HSG Toán 11 năm 2023 – 2024 trường THPT Lê Quý Đôn – Thái Bình:
+ Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB CD AB CD 6a 3 tam giác SAB là tam giác đều. Gọi M là trung điểm của cạnh AD. Đúng Sai 1. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng đi qua S và song song với AB. 2. Giao điểm của đường thẳng AD và mặt phẳng (SBC) nằm trong mặt phẳng (SCD). 3. CD // SB. 4. Mặt phẳng α đi qua M song song với mặt phẳng (SAB) cắt các mặt của hình chóp (nếu có) theo các đoạn giao tuyến tạo thành một đa giác có diện tích bằng 2 5 3.
+ Ba bạn An, Bình, Chiến mỗi người chọn ngẫu nhiên một số tự nhiên thuộc đoạn [1;2023]. Tính xác xuất để ba số được chọn có tổng chia hết cho 3. Làm tròn kết quả đến chữ số thập phân thứ 2.
+ Trong mặt phẳng Oxy cho tam giác ABC có A(1;3), B(2;1), C(5;4). Đường thẳng ∆ đi qua đỉnh A và cắt cạnh BC tại D sao cho diện tích tam giác ADC bằng 2 lần diện tích tam giác ADB. Tính tổng khoảng cách từ B và C đến đường thẳng ∆.
+ Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB CD AB CD 6a 3 tam giác SAB là tam giác đều. Gọi M là trung điểm của cạnh AD. Đúng Sai 1. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng đi qua S và song song với AB. 2. Giao điểm của đường thẳng AD và mặt phẳng (SBC) nằm trong mặt phẳng (SCD). 3. CD // SB. 4. Mặt phẳng α đi qua M song song với mặt phẳng (SAB) cắt các mặt của hình chóp (nếu có) theo các đoạn giao tuyến tạo thành một đa giác có diện tích bằng 2 5 3.
+ Ba bạn An, Bình, Chiến mỗi người chọn ngẫu nhiên một số tự nhiên thuộc đoạn [1;2023]. Tính xác xuất để ba số được chọn có tổng chia hết cho 3. Làm tròn kết quả đến chữ số thập phân thứ 2.
+ Trong mặt phẳng Oxy cho tam giác ABC có A(1;3), B(2;1), C(5;4). Đường thẳng ∆ đi qua đỉnh A và cắt cạnh BC tại D sao cho diện tích tam giác ADC bằng 2 lần diện tích tam giác ADB. Tính tổng khoảng cách từ B và C đến đường thẳng ∆.
3. Xem trước tài liệu, đề thi
4. Tải xuống tài liệu, đề thi
5. Làm bài thi Online đề thi này
Theo TOANMATH
Link bài gốc: https://toanmath.com/2024/04/de-khao-sat-hsg-toan-11-nam-2023-2024-truong-thpt-le-quy-don-thai-binh.html